
开始使用
PEView 是一款基于 C/C++ 开发的命令行交互式 Windows PE 文件解析器，主要用于病毒木马等样本的解包分析，经
过多版本迭代，现已能解析 32/64 位可执行程序的绝大部分通用参数，还内置结构查询、格式转换等功能，为逆向分
析提供基础支撑；而在其基础上升级延伸而来的 PEViewAI，则通过将 PEView 的功能接口化并对接 Ollama 大模型，
让大模型具备分析磁盘静态文件的能力，既能协助逆向分析与反病毒工程师掌握文件结构，又能通过对话式交互提升

分析效率、快速生成静态分析报告，成为生产力工具的重要补充。

独立版：保留 PEView 默认的命令行分析功能，专注基础解析需求，确保工具核心能力的稳定性。

接口版：提供可调用的功能接口，支持通过 Python 语言调用，方便开发者灵活集成到自定义分析流程中。

MCP 版：集成 AI 的服务端版本，可对接本地 Ollama 大模型或其他任意大模型，重点支持对话方式分析恶意
样本，最大化 AI 赋能的价值。

本次更新针对不同场景推出三个版本，其中独立版保留默认命令行分析功能以满足基础需求，接口版本支持通过
Python 调用接口便于灵活集成，MCP 版作为融入 AI 的服务端，可对接本地 Ollama 或其他大模型，实现对话式分析
本地样本，最大化 AI 赋能价值。

版权局登记号：2023SR0490503

独立版
独立版不仅保留了核心的交互式分析能力，更通过丰富的可选参数覆盖 PE 文件逆向分析全流程。其参数体系涵盖文
件操作、结构查看、地址转换、搜索计算等多个维度，既支持打开 PE 文件、显示 DOS 头 / NT 头 / 节表等基础结构信
息，也能完成导入表 / 导出表查询、VA 与 RVA/FOA 地址互转、十六进制计算等专业操作，还具备反汇编、特征码搜
索、保护方式检查等进阶功能。

打开待分析文件
在进行文件相关操作时，需首先通过Open命令完成文件的打开操作，且该操作需一次性执行到位，不支持分步骤或重
复打开同一文件的冗余操作。执行Open命令时，必须严格按照 “Open --path [文件路径]” 的格式进行，其中 “[文件路
径]” 需替换为待操作文件的具体存储路径（例如本地磁盘路径如 e://win32.exe 等）。只有在文件成功通过Open命令
打开后，后续针对该文件的各类分析、查看、解析等操作才能够正常执行，若未执行此打开步骤或打开失败，所有其

他操作都将无法进行。

__ __ _____ _ _ __ _____ _ _

 /_/__/\ /_____\ /_/\ /_\ /_\ /_____\ /_/\ /_\

))))) ((_____/))) ((\/_/ ((_____/)))(((

// /_/ / \ __\ /_/ / \ _\ /_\ \ __\ /_/ //\\ _\

\ \ _\/ / /__/_ \ \ _/ / / / / / / /__/_ \ \ / \ / /

)_)) ((_____\ \ \ / / ((_(((_____\)_) /\ (_(

 _\/ \/_____/ __/_/ \/_/ \/_____/ _\/ \/_/

[编译日期] Oct 19 2025

[解析格式] Windows x86 (PE32)

[当前版本] 4.0.0

[官方网站] peview.lyshark.com

[PEVIEW] # Open --path e://win32.exe

[+] 已读入文件

af://n0
af://n14
af://n16

查询文件头部数据
本次通过Dos和Nt命令查询了目标 PE 文件的头部数据：Dos命令获取了 DOS 头部的完整字段信息，涵盖 DOS 标志、
文件页面相关参数、初始寄存器值、重定位表偏移及 PE 头偏移指针等，其中 DOS 标志 0x00005A4D 验证了 DOS 头
部有效性，PE 头偏移指针 0x00000100 指明了 PE 头在文件中的位置；Nt命令则详细展示了 NT 头部数据，包括验证
PE 有效性的 NT 标志、描述文件基础信息的文件头（如运行平台 x86、区段数目 5 个、时间日期标志对应 2025 年 10
月 17 日创建时间等），以及包含入口点、镜像基址、内存与文件对齐粒度、子系统类型（Windows GUI）、DLL 特
性（支持 ASLR 和 DEP）等关键配置的可选头信息，完整呈现了文件头部的核心结构与参数。

[PEVIEW] #

[PEVIEW] # Info

--

文件基本信息

--

[文件路径]: e://win32.exe

[文件大小]: 14.50 KB

[文件属性]: 归档;

[创建时间]: 2025-10-17 20:46:43

[修改时间]: 2025-10-17 20:46:43

[映射基址]: 0x01540000

--

PE结构标识

--

[DOS签名]: 0x5A4D (有效DOS签名(MZ))

[PE头偏移]: 0x00000100 (从文件开始的偏移)

[NT签名]: 0x00004550 (有效PE签名(PE00))

[机器类型]: 0x014C (x86 (32位))

[节区数量]: 5 个

[时间戳]: 0x68F23AB3 (1601-01-01 08:02:56)

[特性标记]: 0x0102 (可执行;)

--

可选头关键信息

--

[入口点RVA]: 0x000015BB (程序开始执行的相对虚拟地址)

[镜像基址]: 0x00400000 (加载到内存中的首选基地址)

[图像大小]: 0x00007000 字节 (加载到内存后的总大小)

[节区对齐]: 0x00001000 字节 (内存中节区的对齐粒度)

[文件对齐]: 0x00000200 字节 (磁盘上节区的对齐粒度)

[子系统]: 0x0002 (Windows GUI (图形界面))

[DLL特性]: 0x8140 (ASLR支持; DEP支持;)

[栈大小]: 保留 0x00100000 字节, 提交 0x00001000 字节

[堆大小]: 保留 0x00100000 字节, 提交 0x00001000 字节

--

[PEVIEW] # Dos

--

 十六进制 十进制

--

DOS标志(MZ): 00005A4D 00023117

af://n19

文件最后一页的字节数: 00000090 00000144

文件中的页面数: 00000003 00000003

重定位项数量: 00000000 00000000

头部占用的段落数: 00000004 00000004

所需最小额外段落数: 00000000 00000000

所需最大额外段落数: 0000FFFF 00065535

初始SS值(相对): 00000000 00000000

初始SP值: 000000B8 00000184

校验和: 00000000 00000000

初始IP值: 00000000 00000000

初始CS值(相对): 00000000 00000000

重定位表偏移: 00000040 00000064

叠加层数: 00000000 00000000

保留字段e_res[0]: 00000000 00000000

保留字段e_res[1]: 00000000 00000000

保留字段e_res[2]: 00000000 00000000

保留字段e_res[3]: 00000000 00000000

OEM标识符: 00000000 00000000

OEM信息: 00000000 00000000

保留字段e_res2[0]: 00000000 00000000

保留字段e_res2[1]: 00000000 00000000

保留字段e_res2[2]: 00000000 00000000

保留字段e_res2[3]: 00000000 00000000

保留字段e_res2[4]: 00000000 00000000

保留字段e_res2[5]: 00000000 00000000

保留字段e_res2[6]: 00000000 00000000

保留字段e_res2[7]: 00000000 00000000

保留字段e_res2[8]: 00000000 00000000

保留字段e_res2[9]: 00000000 00000000

PE头偏移指针: 00000100 00000256

--

[PEVIEW] # Nt

--

 十六进制 十进制 描述

--

NT标志: 0x00004550 00017744 有效PE签名(PE00)

[文件头(IMAGE_FILE_HEADER)]

运行平台: 0x0000014C 00000332 x86 (32位)

区段数目: 0x00000005 00000005 PE文件包含的区段数量

时间日期标志: 0x68F23AB3 1760705203 Fri Oct 17 20:46:43 2025

特征值: 0x00000102 00000258 可执行文件;

可选头部大小: 0x000000E0 00000224 可选头的字节大小

符号数量: 0x00000000 00000000 符号表中的符号数量

符号表指针: 0x00000000 00000000 符号表在文件中的偏移

[可选头(IMAGE_OPTIONAL_HEADER32)]

入口点(RVA): 0x000015BB 00005563 入口点虚拟地址(VA: 0x004015BB)

镜像基址: 0x00400000 04194304 加载到内存的首选基地址

镜像大小: 0x00007000 00028672 内存中整个镜像的大小(字节)

查询数据目录表
通过执行DataDirectory命令查询到目标 PE 文件的数据目录表信息，共包含 16 个目录项。其中有效目录项（标记
“√”）有 6 个，分别是导入表（Import Table）、资源表（Resource Table）、基址重定位表（Base Relocation
Table）、调试表（Debug Table）、加载配置表（Load Configuration Table）和导入地址表（Import Address
Table），涵盖了程序运行所需的导入函数解析、资源索引、地址修正、调试信息及加载配置等关键数据；其余 10 个
目录项（如导出表、异常表、安全表等）均无效（标记 “×”），无对应数据内容，整体数据目录表结构符合 PE 文件规
范，有效项可支撑程序正常加载与运行。

代码基址(RVA): 0x00001000 00004096 代码段的起始相对虚拟地址

数据基址(RVA): 0x00002000 00008192 数据段的起始相对虚拟地址

代码大小: 0x00000C00 00003072 代码段的总大小(字节)

已初始化数据大小: 0x00002E00 00011776 已初始化数据段的大小(字节)

未初始化数据大小: 0x00000000 00000000 未初始化数据段的大小(字节)

内存对齐: 0x00001000 00004096 内存中区块的对齐粒度(字节)

文件对齐: 0x00000200 00000512 文件中区块的对齐粒度(字节)

子系统: 0x00000002 00000002 Windows GUI(图形界面)

首部大小: 0x00000400 00001024 DOS头+NT头+区段表的总大小

校验和: 0x00000000 00000000 用于验证文件完整性(通常为0)

数据目录数量: 0x00000010 00000016 数据目录项的数量(通常为16)

链接器主版本: 0x0000000C 00000012

链接器次版本: 0x00000000 00000000

操作系统版本: 6.0 - 主版本.6.次版本.0

映像版本: 0.0 - 主版本.0.次版本.0

子系统版本: 6.0 - 主版本.6.次版本.0

Win32版本值: 0x00000000 00000000 通常为0(保留)

DLL特征: 0x00008140 00033088 支持ASLR; 支持DEP;

栈保留大小: 0x00100000 01048576 进程栈的保留大小

栈提交大小: 0x00001000 00004096 进程栈的初始提交大小

堆保留大小: 0x00100000 01048576 进程堆的保留大小

堆提交大小: 0x00001000 00004096 进程堆的初始提交大小

加载器标志: 0x00000000 00000000 已废弃(通常为0)

--

[PEVIEW] # DataDirectory

--

--

编号 标准名称 目录RVA 目录VA 目录FOA Size(十进制)

Size(十六进制) 有效 详细描述

--

--

001 Export Table 0x00000000 0x00000000 0xFFFFFFFF 0000000000

0x00000000 × 包含导出函数和符号信息，供其他模块调用

002 Import Table 0x000022A4 0x004022A4 0x000012A4 0000000080

0x00000050 √ 包含导入的DLL和函数信息，需要在加载时解析

003 Resource Table 0x00004000 0x00404000 0x00001A00 0000007600

0x00001DB0 √ 包含程序资源（图标、字符串、对话框等）的索引信息

004 Exception Table 0x00000000 0x00000000 0xFFFFFFFF 0000000000

0x00000000 × 包含异常处理相关结构，用于异常捕获和处理

005 Security Table 0x00000000 0x00000000 0xFFFFFFFF 0000000000

0x00000000 × 包含数字签名等安全信息，用于验证文件完整性

af://n22

查询节表
通过Section命令查询到目标 PE 文件包含 5 个节区，各节区功能与属性明确：.text 为代码节（可执行、可读），存储
程序核心执行代码；.rdata 和.data 为已初始化数据节（前者仅可读，后者可读可写），分别存储常量数据与变量数
据；.rsrc 为资源节（可读），存放程序所需图标、字符串等资源；.reloc 为重定位节（可读），包含地址重定位信
息。各节区均有明确的虚拟偏移（RVA）、实际偏移（FOA）及对应大小，节区属性符合各自功能定位，整体结构完
整且规范。

006 Base Relocation Table 0x00006000 0x00406000 0x00003800 0000000392

 0x00000188 √ 包含基地址重定位信息，用于模块加载地址与默认不同时修正

007 Debug Table 0x00002110 0x00402110 0x00001110 0000000056

0x00000038 √ 包含调试信息（如调试符号路径、类型等）

008 Architecture 0x00000000 0x00000000 0xFFFFFFFF 0000000000

0x00000000 × 版权信息字符串（通常为Unicode格式）

009 Global Pointer 0x00000000 0x00000000 0xFFFFFFFF 0000000000

0x00000000 × 全局指针（用于某些架构的全局变量访问）

010 TLS Table 0x00000000 0x00000000 0xFFFFFFFF 0000000000

0x00000000 × 线程本地存储信息，用于线程私有数据

011 Load Configuration Table 0x00002150 0x00402150 0x00001150 0000000064

 0x00000040 √ 加载配置信息（如安全cookie、SEH验证等）

012 Bound Import Table 0x00000000 0x00000000 0xFFFFFFFF 0000000000

0x00000000 × 绑定导入表，预解析的导入函数地址以加速加载

013 Import Address Table 0x00002000 0x00402000 0x00001000 0000000232

 0x000000E8 √ 导入地址表，存储实际导入函数的内存地址

014 Delay Import Descriptor 0x00000000 0x00000000 0xFFFFFFFF 0000000000

 0x00000000 × 延迟导入描述符，用于延迟加载DLL（运行时再加载）

015 COM Descriptor 0x00000000 0x00000000 0xFFFFFFFF 0000000000

0x00000000 × COM组件描述信息（如CLSID、接口信息等）

016 Reserved 0x00000000 0x00000000 0xFFFFFFFF 0000000000

0x00000000 × 保留未使用

--

--

[PEVIEW] # Section

--

--

编号 节区名称 虚拟偏移(RVA) 虚拟大小 实际偏移(FOA) 实际大小 重定位偏移

 重定位数量 行号偏移 行号数量 节区属性(十六进制) 节区属性描述

--

--

1 .text 0x00001000 0x00000B74 0x00000400 0x00000C00 0x00000000

 0 0x00000000 0 0x60000020 代码节; 可执行; 可读;

2 .rdata 0x00002000 0x000007BA 0x00001000 0x00000800 0x00000000

 0 0x00000000 0 0x40000040 已初始化数据; 可读;

3 .data 0x00003000 0x00000518 0x00001800 0x00000200 0x00000000

 0 0x00000000 0 0xC0000040 已初始化数据; 可读; 可写;

4 .rsrc 0x00004000 0x00001DB0 0x00001A00 0x00001E00 0x00000000

 0 0x00000000 0 0x40000040 已初始化数据; 可读;

5 .reloc 0x00006000 0x00000188 0x00003800 0x00000200 0x00000000

 0 0x00000000 0 0x42000040 已初始化数据; 可读;

--

--

af://n25
af://n28

查询所有导入表
通过Import命令查询到目标 PE 文件的导入表信息，首先明确导入表全局数据：数据目录 RVA 为 0x000022A4、FOA
为 0x000012A4，模块加载基地址为 0x00400000。文件仅导入 1 个模块 USER32.dll，该模块的导入描述符 RVA 为
0x000012A4、FOA 为 0x000006A4，TimeDateStamp 为 0x00000000（未绑定），ForwarderChain 为
0x00000000（存在转发），INT（导入名称表）RVA 为 0x0000238C、FOA 为 0x0000138C，IAT（导入地址表）
RVA 为 0x00002098、FOA 为 0x00001098。同时，从 USER32.dll 中共导入 19 个函数，均为名称导入方式，涵盖窗
口操作（如 CreateWindowExW、DestroyWindow）、消息处理（如 DispatchMessageW、TranslateMessage）、
资源加载（如 LoadCursorW、LoadIconW）等功能，且所有函数均存在函数转发状态。

[PEVIEW] # Import

--

--

导入表全局信息

导入表数据目录RVA: 0x000022A4, FOA: 0x000012A4

模块加载基地址: 0x00400000

--

--

--

--

[*] 导入模块 [1]:USER32.dll

 导入描述符信息:

 - 描述符RVA: 0x000012A4, FOA: 0x000006A4

 - TimeDateStamp: 0x00000000（未绑定）

 - ForwarderChain: 0x00000000（存在转发）

 - INT（导入名称表）RVA: 0x0000238C, FOA: 0x0000138C

 - IAT（导入地址表）RVA: 0x00002098, FOA: 0x00001098

--

--

函数序号 导入类型 Hint值 INT原始数据 IAT原始数据 INT VA

IAT VA 函数名称/序号 状态

--

--

[1] 名称导入 231 0x0000250A 0x0000250A 0x0040238C

0x00402098 EndDialog 存在函数转发

[2] 名称导入 625 0x000024F8 0x000024F8 0x00402390

0x0040209C PostQuitMessage 存在函数转发

[3] 名称导入 233 0x000024EC 0x000024EC 0x00402394

0x004020A0 EndPaint 存在函数转发

[4] 名称导入 14 0x000024DE 0x000024DE 0x00402398

0x004020A4 BeginPaint 存在函数转发

[5] 名称导入 161 0x000024CC 0x000024CC 0x0040239C

0x004020A8 DefWindowProcW 存在函数转发

[6] 名称导入 173 0x000024BC 0x000024BC 0x004023A0

0x004020AC DestroyWindow 存在函数转发

[7] 名称导入 178 0x000024AA 0x000024AA 0x004023A4

0x004020B0 DialogBoxParamW 存在函数转发

af://n28

查询所有导入库
通过ImportDll命令查询到该程序共导入 3 个动态链接库，分别是 USER32.dll、MSVCR120.dll 和 KERNEL32.dll。每
个 DLL 均包含完整的导入相关地址信息，包括 INT（导入名称表）和 IAT（导入地址表）的 RVA、FOA、VA，以及名
称的 RVA 和 FOA。所有 DLL 的时间戳均为 0x00000000（未绑定），ForwarderChain 均为未设置（0），整体呈现
了程序运行所依赖的动态链接库及其导入表相关地址配置。

[8] 名称导入 855 0x0000249A 0x0000249A 0x004023A8

0x004020B4 UpdateWindow 存在函数转发

[9] 名称导入 800 0x0000248C 0x0000248C 0x004023AC

0x004020B8 ShowWindow 存在函数转发

[10] 名称导入 113 0x0000247A 0x0000247A 0x004023B0

0x004020BC CreateWindowExW 存在函数转发

[11] 名称导入 649 0x00002466 0x00002466 0x004023B4

0x004020C0 RegisterClassExW 存在函数转发

[12] 名称导入 545 0x00002458 0x00002458 0x004023B8

0x004020C4 LoadCursorW 存在函数转发

[13] 名称导入 547 0x0000244C 0x0000244C 0x004023BC

0x004020C8 LoadIconW 存在函数转发

[14] 名称导入 181 0x00002438 0x00002438 0x004023C0

0x004020CC DispatchMessageW 存在函数转发

[15] 名称导入 831 0x00002424 0x00002424 0x004023C4

0x004020D0 TranslateMessage 存在函数转发

[16] 名称导入 829 0x0000240C 0x0000240C 0x004023C8

0x004020D4 TranslateAcceleratorW 存在函数转发

[17] 名称导入 371 0x000023FE 0x000023FE 0x004023CC

0x004020D8 GetMessageW 存在函数转发

[18] 名称导入 539 0x000023EA 0x000023EA 0x004023D0

0x004020DC LoadAcceleratorsW 存在函数转发

[19] 名称导入 560 0x000023DC 0x000023DC 0x004023D4

0x004020E0 LoadStringW 存在函数转发

--

--

af://n31

查询特定库中导入表
通过ImportByName -dll KERNEL32.dll命令，查询到该程序从 KERNEL32.dll 中导入了 8 个函数，且均为名称导入类
型。每个函数均包含完整的地址信息，包括 INT（导入名称表）和 IAT（导入地址表）的 RVA、FOA、VA，以及对应
的 Hint 值与函数名。导入的函数涵盖内存指针操作（如 DecodePointer、EncodePointer）、系统信息获取（如
GetSystemTimeAsFileTime、GetCurrentThreadId、GetCurrentProcessId）、性能与调试相关（如
QueryPerformanceCounter、IsDebuggerPresent）及处理器特性检测（IsProcessorFeaturePresent）等功能，满
足程序在系统交互、内存管理及运行状态监测等方面的需求。

[PEVIEW] # ImportDll

--

--

序号 DLL名称 INT RVA INT FOA INT VA IAT RVA

 IAT FOA IAT VA 时间戳(十六进制) 时间戳(UTC) ForwarderChain

 名称RVA 名称FOA

--

--

1 USER32.dll 0x0000238C 0x0000138C 0x0040238C 0x00002098

0x00001098 0x00402098 0x00000000 未绑定(0) 未设置(0)

0x00002516 0x00001516

2 MSVCR120.dll 0x00002318 0x00001318 0x00402318 0x00002024

0x00001024 0x00402024 0x00000000 未绑定(0) 未设置(0)

0x0000267A 0x0000167A

3 KERNEL32.dll 0x000022F4 0x000012F4 0x004022F4 0x00002000

0x00001000 0x00402000 0x00000000 未绑定(0) 未设置(0)

0x000027AC 0x000017AC

--

--

af://n34

查询特定库中函数位置
通过ImportByFunction命令分别查询QueryPerformanceCounter和GetMessageW两个函数的导入位置，结果显示
两个函数均在程序中被引入，且均为名称导入类型。其中，QueryPerformanceCounter函数来自 KERNEL32.dll，
Hint 值为 1069，对应 INT（导入名称表）的 RVA、FOA、VA 分别为 0x00002304、0x00001304、0x00402304，
IAT（导入地址表）的 RVA、FOA、VA 分别为 0x00002010、0x00001010、0x00402010；GetMessageW函数来自
USER32.dll，Hint 值为 371，INT 的 RVA、FOA、VA 分别为 0x000023CC、0x000013CC、0x004023CC，IAT 的
RVA、FOA、VA 分别为 0x000020D8、0x000010D8、0x004020D8，清晰呈现了两个函数的导入来源及相关地址信
息。

[PEVIEW] # ImportByName -dll KERNEL32.dll

--

--

序号 导入类型 Hint值 INT RVA INT FOA INT VA IAT

RVA IAT FOA IAT VA 函数名/序号 [当前模块: KERNEL32.dll]

--

--

1 名称导入 254 0x000022F4 0x000012F4 0x004022F4 0x00002000

0x00001000 0x00402000 DecodePointer

2 名称导入 726 0x000022F8 0x000012F8 0x004022F8 0x00002004

0x00001004 0x00402004 GetSystemTimeAsFileTime

3 名称导入 526 0x000022FC 0x000012FC 0x004022FC 0x00002008

0x00001008 0x00402008 GetCurrentThreadId

4 名称导入 522 0x00002300 0x00001300 0x00402300 0x0000200C

0x0000100C 0x0040200C GetCurrentProcessId

5 名称导入 1069 0x00002304 0x00001304 0x00402304 0x00002010

0x00001010 0x00402010 QueryPerformanceCounter

6 名称导入 877 0x00002308 0x00001308 0x00402308 0x00002014

0x00001014 0x00402014 IsProcessorFeaturePresent

7 名称导入 871 0x0000230C 0x0000130C 0x0040230C 0x00002018

0x00001018 0x00402018 IsDebuggerPresent

8 名称导入 289 0x00002310 0x00001310 0x00402310 0x0000201C

0x0000101C 0x0040201C EncodePointer

--

--

[PEVIEW] # ImportByFunction --function QueryPerformanceCounter

--

--

匹配序号 导入类型 Hint值 INT RVA INT FOA INT VA

IAT RVA IAT FOA IAT VA 所在DLL

--

--

[1] 名称导入 1069 0x00002304 0x00001304 0x00402304

0x00002010 0x00001010 0x00402010 KERNEL32.dll

--

--

[PEVIEW] #

[PEVIEW] # ImportByFunction --function GetMessageW

--

--

af://n37

查询所有导出表
通过Export命令查询已打开的 e://win32.dll 文件导出表信息，首先明确导出表全局数据：数据目录 RVA 为
0x00016CD0、FOA 为 0x00005AD0，特征值 0x00000000，时间戳对应 1601-01-01 08:02:56（非实际时间），版
本号 0.0，模块名为 win32.dll，起始序号 0x0001，函数总数与命名函数数均为 4。导出的 4 个函数均状态正常且无
转发目标，序号 1-4 的函数 RVA 分别为 0x000110EB、0x0001114F、0x00011041、0x00017128，前 3 个函数位
于.text 节，第 4 个位于.data 节，函数名称分别为？？0Cdddl@@QAE@XZ、??4Cdddl@@QAEAAV0@ABV0@@Z、?
fndddl@@YAHXZ、?ndddl@@3HA，涵盖类构造、赋值及普通功能函数等类型。

匹配序号 导入类型 Hint值 INT RVA INT FOA INT VA

IAT RVA IAT FOA IAT VA 所在DLL

--

--

[1] 名称导入 371 0x000023CC 0x000013CC 0x004023CC

0x000020D8 0x000010D8 0x004020D8 USER32.dll

--

--[PEVIEW] #

ImportByFunction --function QueryPerformanceCounter

--

--

匹配序号 导入类型 Hint值 INT RVA INT FOA INT VA

IAT RVA IAT FOA IAT VA 所在DLL

--

--

[1] 名称导入 1069 0x00002304 0x00001304 0x00402304

0x00002010 0x00001010 0x00402010 KERNEL32.dll

--

--

[PEVIEW] #

[PEVIEW] # ImportByFunction --function GetMessageW

--

--

匹配序号 导入类型 Hint值 INT RVA INT FOA INT VA

IAT RVA IAT FOA IAT VA 所在DLL

--

--

[1] 名称导入 371 0x000023CC 0x000013CC 0x004023CC

0x000020D8 0x000010D8 0x004020D8 USER32.dll

--

--

[PEVIEW] # Open --path e://win32.dll

[+] 已读入文件

[PEVIEW] #

[PEVIEW] # Export

--

导出表全局信息

导出表数据目录RVA: 0x00016CD0, FOA: 0x00005AD0

特征值(Characteristics): 0x00000000

时间戳(TimeDateStamp): 0x68F24619 -> 1601-01-01 08:02:56

版本号: 0.0

af://n40

查询重定位项
通过FixReloc命令查询到该程序的重定位表信息，首先明确全局配置：原始映像基地址为 0x10000000，模拟新基地
址（示例）为 0x10010000，重定位表 RVA 为 0x0001A000、FOA 为 0x00006E00，总大小 0x00000324 字节，最终
遍历出 5 个有效重定位块。仅第一个块有完整配置（起始 RVA 0x00011000、FOA 0x00006E00、VA 0x10011000、
大小 0x00D4、项数量 102），后续块无实际配置；所有展示的 21 个重定位项均为 “HIGHLOW（32 位完整）” 类
型，包含项偏移、项 RVA/FOA、原始 VA 及重定位后 VA，重定位后 VA 均在原始 VA 基础上增加 0x10000（因新基地
址较原始基地址偏移 0x10000），整体可支撑模块加载地址变更时的地址修正需求。

模块名: win32.dll

起始序号(Base): 0x0001

函数总数(NumberOfFunctions): 4

命名函数数(NumberOfNames): 4

--

导出序号 函数RVA 函数VA 函数FOA 所在节 函数名称

状态 转发目标

--

 1 0x000110EB 0x100110EB 0x000004EB .text ??

0Cdddl@@QAE@XZ 正常 无

 2 0x0001114F 0x1001114F 0x0000054F .text ??

4Cdddl@@QAEAAV0@ABV0@@Z 正常 无

 3 0x00011041 0x10011041 0x00000441 .text ?

fndddl@@YAHXZ 正常 无

 4 0x00017128 0x10017128 0x00005F28 .data ?ndddl@@3HA

 正常 无

--

[PEVIEW] # FixReloc

--

重定位表全局信息

原始映像基地址: 0x10000000

模拟新基地址(示例): 0x10010000

重定位表RVA: 0x0001A000, FOA: 0x00006E00, 总大小: 0x00000324 字节

--

块序号 | 块起始RVA | 块FOA | 块VA | 块大小 | 项数量 | 项序号 | 类型 | 类型描述 | 项

偏移 | 项RVA | 项FOA | 原始VA | 重定位后VA

--

1 | 0x00011000 | 0x00006E00 | 0x10011000 | 0x00D4 | 102 | 1 | 3 | HIGHLOW

（32位完整） | 0x0442 | 0x00011442 | 0x00000842 | 0x10017130 | 0x10027130

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 2 | 3 | HIGHLOW

（32位完整） | 0x0455 | 0x00011455 | 0x00000855 | 0x10017130 | 0x10027130

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 3 | 3 | HIGHLOW

（32位完整） | 0x04AA | 0x000114AA | 0x000008AA | 0x1001565C | 0x1002565C

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 4 | 3 | HIGHLOW

（32位完整） | 0x04B7 | 0x000114B7 | 0x000008B7 | 0x100180D4 | 0x100280D4

af://n43

查询重定位表分页
通过FixRelocPage命令查询到该程序重定位表的分页情况，先明确全局信息：原始映像基地址 0x10000000，模拟新
基地址 0x10010000，重定位表数据目录 RVA 0x0001A000、FOA 0x00006E00，总大小 0x00000324 字节，共遍历
出 5 个重定位块。此次展示了 2 个核心块的分页详情：块 1 起始 RVA 0x00011000、FOA 0x00006E00、内存起始
VA 0x10011000、长度 0x00D4，含 102 个重定位项；块 5 起始 RVA 0x00016000、FOA 0x000070F8、内存起始 VA
0x10016000、长度 0x002C，含 18 个重定位项。所有有效项（除块 5 第 18 项）均为 “HIGHLOW（32 位完整地
址）” 类型，重定位后地址较原始地址偏移 0x10000（匹配新基地址变更），块 5 第 18 项为 “ABSOLUTE（无意义）”
类型，无实际地址修正作用，整体分页结构清晰呈现了不同内存块的重定位配置。

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 5 | 3 | HIGHLOW

（32位完整） | 0x04C7 | 0x000114C7 | 0x000008C7 | 0x1001804C | 0x1002804C

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 6 | 3 | HIGHLOW

（32位完整） | 0x04CC | 0x000114CC | 0x000008CC | 0x10017544 | 0x10027544

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 7 | 3 | HIGHLOW

（32位完整） | 0x04D2 | 0x000114D2 | 0x000008D2 | 0x10017544 | 0x10027544

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 8 | 3 | HIGHLOW

（32位完整） | 0x04D8 | 0x000114D8 | 0x000008D8 | 0x10017534 | 0x10027534

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 9 | 3 | HIGHLOW

（32位完整） | 0x04F8 | 0x000114F8 | 0x000008F8 | 0x1001101E | 0x1002101E

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 10 | 3 | HIGHLOW

（32位完整） | 0x0505 | 0x00011505 | 0x00000905 | 0x10011136 | 0x10021136

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 11 | 3 | HIGHLOW

（32位完整） | 0x055E | 0x0001155E | 0x0000095E | 0x10017134 | 0x10027134

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 12 | 3 | HIGHLOW

（32位完整） | 0x0566 | 0x00011566 | 0x00000966 | 0x10017134 | 0x10027134

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 13 | 3 | HIGHLOW

（32位完整） | 0x056E | 0x0001156E | 0x0000096E | 0x10017134 | 0x10027134

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 14 | 3 | HIGHLOW

（32位完整） | 0x05A2 | 0x000115A2 | 0x000009A2 | 0x10017520 | 0x10027520

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 15 | 3 | HIGHLOW

（32位完整） | 0x05CA | 0x000115CA | 0x000009CA | 0x10017530 | 0x10027530

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 16 | 3 | HIGHLOW

（32位完整） | 0x05DF | 0x000115DF | 0x000009DF | 0x10017530 | 0x10027530

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 17 | 3 | HIGHLOW

（32位完整） | 0x05E8 | 0x000115E8 | 0x000009E8 | 0x10015514 | 0x10025514

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 18 | 3 | HIGHLOW

（32位完整） | 0x05ED | 0x000115ED | 0x000009ED | 0x10015208 | 0x10025208

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 19 | 3 | HIGHLOW

（32位完整） | 0x0605 | 0x00011605 | 0x00000A05 | 0x10015104 | 0x10025104

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 20 | 3 | HIGHLOW

（32位完整） | 0x060A | 0x0001160A | 0x00000A0A | 0x10015000 | 0x10025000

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 21 | 3 | HIGHLOW

（32位完整） | 0x0618 | 0x00011618 | 0x00000A18 | 0x10017530 | 0x10027530

--

重定位表遍历完成，共5个有效重定位块

--

[PEVIEW] # FixRelocPage

af://n46

--

重定位表全局信息

原始映像基地址: 0x10000000

模拟新基地址(示例): 0x10010000

重定位表数据目录RVA: 0x0001A000, FOA: 0x00006E00

重定位表总大小: 0x00000324 字节

--

块序号 块起始RVA 块FOA 块内存起始VA 块长度 重定位项数

--

1 0x00011000 0x00006E00 0x10011000 0x00D4 102

 ├─ 项序号 类型 类型描述 项偏移 完整RVA 原始地址 重定位后地

址

 ├─ 1 3 HIGHLOW（32位完整地址） 0x0442 0x00011442 0x10017130

 0x10027130

 ├─ 2 3 HIGHLOW（32位完整地址） 0x0455 0x00011455 0x10017130

 0x10027130

 ├─ 3 3 HIGHLOW（32位完整地址） 0x04AA 0x000114AA 0x1001565C

 0x1002565C

 ├─ 4 3 HIGHLOW（32位完整地址） 0x04B7 0x000114B7 0x100180D4

 0x100280D4

 ├─ 5 3 HIGHLOW（32位完整地址） 0x04C7 0x000114C7 0x1001804C

 0x1002804C

 ├─ 6 3 HIGHLOW（32位完整地址） 0x04CC 0x000114CC 0x10017544

 0x10027544

 ├─ 7 3 HIGHLOW（32位完整地址） 0x04D2 0x000114D2 0x10017544

 0x10027544

 ├─ 8 3 HIGHLOW（32位完整地址） 0x04D8 0x000114D8 0x10017534

 0x10027534

 ├─ 9 3 HIGHLOW（32位完整地址） 0x04F8 0x000114F8 0x1001101E

 0x1002101E

 ├─ 10 3 HIGHLOW（32位完整地址） 0x0505 0x00011505

0x10011136 0x10021136

 ├─ 11 3 HIGHLOW（32位完整地址） 0x055E 0x0001155E

0x10017134 0x10027134

 ├─ 12 3 HIGHLOW（32位完整地址） 0x0566 0x00011566

0x10017134 0x10027134

 ├─ 13 3 HIGHLOW（32位完整地址） 0x056E 0x0001156E

0x10017134 0x10027134

 5 0x00016000 0x000070F8 0x10016000 0x002C 18

 ├─ 项序号 类型 类型描述 项偏移 完整RVA 原始地址 重定位后地

址

 ├─ 1 3 HIGHLOW（32位完整地址） 0x01A8 0x000161A8 0x10017160

 0x10027160

 ├─ 2 3 HIGHLOW（32位完整地址） 0x01AC 0x000161AC 0x100171B0

 0x100271B0

 ├─ 3 3 HIGHLOW（32位完整地址） 0x01F4 0x000161F4 0x10017004

 0x10027004

 ├─ 4 3 HIGHLOW（32位完整地址） 0x05E4 0x000165E4 0x100110AF

 0x100210AF

查询重定位页内分页
通过FixRelocRVA --rva 00011000命令，查询指定 RVA（0x00011000）对应的重定位页内分页信息。首先明确重定
位表全局配置：原始映像基地址 0x10000000，模拟新基地址 0x10010000，重定位表 RVA 0x0001A000、FOA
0x00006E00，总大小 0x00000324 字节，共 5 个有效重定位块。查询结果中，仅第 1 个块与指定 RVA 匹配（块起始
RVA 为 0x00011000），该块 FOA 0x00006E00、VA 0x10011000、大小 0x00D4、含 102 个重定位项；后续块无实
际配置。展示的 19 个重定位项均为 “HIGHLOW（32 位完整）” 类型，包含项偏移、项 RVA/FOA、原始 VA 及重定位
后 VA，重定位后 VA 均在原始 VA 基础上增加 0x10000（匹配新基地址偏移），清晰呈现了指定 RVA 页内的重定位细
节。

 ├─ 5 3 HIGHLOW（32位完整地址） 0x05E8 0x000165E8 0x100110AF

 0x100210AF

 ├─ 6 3 HIGHLOW（32位完整地址） 0x08F8 0x000168F8 0x100110A5

 0x100210A5

 ├─ 7 3 HIGHLOW（32位完整地址） 0x08FC 0x000168FC 0x100110A5

 0x100210A5

 ├─ 8 3 HIGHLOW（32位完整地址） 0x0B20 0x00016B20 0x10011AB0

 0x10021AB0

 ├─ 9 3 HIGHLOW（32位完整地址） 0x0B28 0x00016B28 0x10011A76

 0x10021A76

 ├─ 10 3 HIGHLOW（32位完整地址） 0x0B2C 0x00016B2C

0x10011A91 0x10021A91

 ├─ 11 3 HIGHLOW（32位完整地址） 0x0B4C 0x00016B4C

0x10011DA5 0x10021DA5

 ├─ 12 3 HIGHLOW（32位完整地址） 0x0B50 0x00016B50

0x10011DCC 0x10021DCC

 ├─ 13 3 HIGHLOW（32位完整地址） 0x0B70 0x00016B70

0x10012088 0x10022088

 ├─ 14 3 HIGHLOW（32位完整地址） 0x0B8C 0x00016B8C

0x10012376 0x10022376

 ├─ 15 3 HIGHLOW（32位完整地址） 0x0B90 0x00016B90

0x10012389 0x10022389

 ├─ 16 3 HIGHLOW（32位完整地址） 0x0BAC 0x00016BAC

0x10012448 0x10022448

 ├─ 17 3 HIGHLOW（32位完整地址） 0x0BB0 0x00016BB0

0x1001245B 0x1002245B

 ├─ 18 0 ABSOLUTE（无意义） 0x0000 0x00016000 0x00000000

 0x00010000

 └─ （块结束）

--

重定位表遍历完成，共5个重定位块

--

[PEVIEW] # FixRelocRVA --rva 00011000

--

重定位表全局信息

原始映像基地址: 0x10000000

模拟新基地址(示例): 0x10010000

重定位表RVA: 0x0001A000, FOA: 0x00006E00, 总大小: 0x00000324 字节

af://n49

--

块序号 | 块起始RVA | 块FOA | 块VA | 块大小 | 项数量 | 项序号 | 类型 | 类型描述 | 项

偏移 | 项RVA | 项FOA | 原始VA | 重定位后VA

--

1 | 0x00011000 | 0x00006E00 | 0x10011000 | 0x00D4 | 102 | 1 | 3 | HIGHLOW

（32位完整） | 0x0442 | 0x00011442 | 0x00000842 | 0x10017130 | 0x10027130

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 2 | 3 | HIGHLOW

（32位完整） | 0x0455 | 0x00011455 | 0x00000855 | 0x10017130 | 0x10027130

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 3 | 3 | HIGHLOW

（32位完整） | 0x04AA | 0x000114AA | 0x000008AA | 0x1001565C | 0x1002565C

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 4 | 3 | HIGHLOW

（32位完整） | 0x04B7 | 0x000114B7 | 0x000008B7 | 0x100180D4 | 0x100280D4

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 5 | 3 | HIGHLOW

（32位完整） | 0x04C7 | 0x000114C7 | 0x000008C7 | 0x1001804C | 0x1002804C

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 6 | 3 | HIGHLOW

（32位完整） | 0x04CC | 0x000114CC | 0x000008CC | 0x10017544 | 0x10027544

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 7 | 3 | HIGHLOW

（32位完整） | 0x04D2 | 0x000114D2 | 0x000008D2 | 0x10017544 | 0x10027544

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 8 | 3 | HIGHLOW

（32位完整） | 0x04D8 | 0x000114D8 | 0x000008D8 | 0x10017534 | 0x10027534

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 9 | 3 | HIGHLOW

（32位完整） | 0x04F8 | 0x000114F8 | 0x000008F8 | 0x1001101E | 0x1002101E

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 10 | 3 | HIGHLOW

（32位完整） | 0x0505 | 0x00011505 | 0x00000905 | 0x10011136 | 0x10021136

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 11 | 3 | HIGHLOW

（32位完整） | 0x055E | 0x0001155E | 0x0000095E | 0x10017134 | 0x10027134

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 12 | 3 | HIGHLOW

（32位完整） | 0x0566 | 0x00011566 | 0x00000966 | 0x10017134 | 0x10027134

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 13 | 3 | HIGHLOW

（32位完整） | 0x056E | 0x0001156E | 0x0000096E | 0x10017134 | 0x10027134

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 14 | 3 | HIGHLOW

（32位完整） | 0x05A2 | 0x000115A2 | 0x000009A2 | 0x10017520 | 0x10027520

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 15 | 3 | HIGHLOW

（32位完整） | 0x05CA | 0x000115CA | 0x000009CA | 0x10017530 | 0x10027530

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 16 | 3 | HIGHLOW

（32位完整） | 0x05DF | 0x000115DF | 0x000009DF | 0x10017530 | 0x10027530

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 17 | 3 | HIGHLOW

（32位完整） | 0x05E8 | 0x000115E8 | 0x000009E8 | 0x10015514 | 0x10025514

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 18 | 3 | HIGHLOW

（32位完整） | 0x05ED | 0x000115ED | 0x000009ED | 0x10015208 | 0x10025208

0 | 0x00000000 | 0x00000000 | 0x00000000 | 0x0000 | 0 | 19 | 3 | HIGHLOW

（32位完整） | 0x0605 | 0x00011605 | 0x00000A05 | 0x10015104 | 0x10025104

--

重定位表遍历完成，共5个有效重定位块

--

af://n52

查询资源表
通过Resource命令查询到该程序的资源表信息，首先明确全局配置：资源表数据目录 RVA 为 0x00019000、FOA 为
0x00006800，总大小 1084 字节（0x0000043C），在文件中的基地址为 0x01506800（由全局文件基地址与 FOA 计
算得出）。资源表结构按 “类型目录→名称 / ID 目录→语言目录” 层级展开：类型目录含 1 个 ID 条目（类型 ID
0x0018，未知类型），指向名称 / ID 目录；名称 / ID 目录含 1 个 ID 条目（资源 ID 0x0002），指向语言目录；语言
目录含 1 个 ID 条目（语言 ID 0x0409），对应资源数据，该数据 RVA 为 0x00019170、FOA 为 0x00006970，大小
381 字节（0x0000017D），代码页 0x0000（用于本地化编码），整体仅解析出一级资源，结构层级清晰但资源类型
未明确。

[PEVIEW] # Resource

--

资源表全局信息

资源表数据目录RVA: 0x00019000, FOA: 0x00006800

资源表总大小: 1084 字节 (0x0000043C)

资源表在文件中的基地址: 0x01506800 (GlobalFileBase + FOA)

--

[类型目录] 信息:

- 目录RVA: 0x00018800, FOA: 0x00006800

- 命名条目数: 0, ID条目数: 1, 总条目数: 1

 |- [条目 1] ID条目 (类型ID: 0x0018, 类型: 未知类型):

 |- - 条目偏移: 0x00000018 (相对资源基地址)

 |- - 条目类型: 目录 (指向名称/ID目录)

 |- [名称/ID目录] 信息:

 |- - 目录RVA: 0x00019018, FOA: 0x00006818

 |- - 命名条目数: 0, ID条目数: 1, 总条目数: 1

 |- |- [条目 1] ID条目 (资源ID: 0x0002):

 |- |- - 条目偏移: 0x00000030 (相对资源基地址)

 |- |- - 条目类型: 目录 (指向语言目录)

 |- |- [语言目录] 信息:

 |- |- - 目录RVA: 0x00019030, FOA: 0x00006830

 |- |- - 命名条目数: 0, ID条目数: 1, 总条目数: 1

 |- |- |- [条目 1] ID条目 (语言ID: 0x0409):

 |- |- |- - 条目偏移: 0x00000048 (相对资源基地址)

 |- |- |- - 条目类型: 资源数据

 |- |- |- - 数据RVA: 0x00019170, FOA: 0x00006970

 |- |- |- - 数据大小: 381 字节 (0x0000017D)

 |- |- |- - 代码页: 0x0000 (用于本地化编码)

--

资源表解析完成

--

af://n52
af://n55

检查函数内存地址
通过GetProcAddr命令分别验证 user32.dll 中MessageBoxA和MessageBoxW两个函数的内存地址，结果显示：两个
函数所在的 user32.dll 加载基地址均为 0x75660000；其中MessageBoxA函数的相对偏移（RVA）为 0x0008A7F0，
绝对地址（VA）为 0x756EA7F0（由基地址加 RVA 计算得出）；MessageBoxW函数的相对偏移（RVA）为
0x0008AD10，绝对地址（VA）为 0x756EAD10，清晰呈现了两个同模块函数的内存地址配置，且符合基地址与 RVA
共同确定绝对地址的计算逻辑。

检查启用保护模式
通过Protection命令检查当前打开的 DLL 文件保护模式，结果显示：模块为 x86（32 位）图形界面（GUI）类型
DLL，链接器版本 0.0。安全特性方面，仅基址随机化（ASLR）启用、DEP/NX 保护兼容（数据页不可执行），高熵
ASLR、控制流保护（CFG）、强制完整性均禁用，支持 SEH 异常处理且无数字证书。其他特性上，终端服务感知为
“否”，UAC 虚拟化为禁用（不虚拟化文件系统 / 注册表），隔离特性禁用，但存在调试信息（含调试符号目录），整
体保护配置以基础安全防护为主，未启用高阶保护功能。

[PEVIEW] # GetProcAddr --dll user32.dll --function MessageBoxA

--

[*] 尝试获取DLL函数地址:

[*] DLL名称:user32.dll

[*] 函数名称:MessageBoxA

--

[+] DLL加载基地址:0x75660000

[+] 函数相对偏移（RVA）:0x0008A7F0

[+] 函数绝对地址（VA）:0x756EA7F0

--

[PEVIEW] #

[PEVIEW] # GetProcAddr --dll user32.dll --function MessageBoxW

--

[*] 尝试获取DLL函数地址:

[*] DLL名称:user32.dll

[*] 函数名称:MessageBoxW

--

[+] DLL加载基地址:0x75660000

[+] 函数相对偏移（RVA）:0x0008AD10

[+] 函数绝对地址（VA）:0x756EAD10

--

[PEVIEW] # Protection

--

[模块基本属性]

--

文件类型: DLL文件

机器架构: x86 (32位)

子系统类型: 图形界面应用程序 (GUI)

链接器版本: 0.0

--

[安全特性]

--

基址随机化(ASLR): 启用

高熵ASLR: 禁用

af://n55
af://n58

输出十六进制及字符串
通过HexAscii --offset 0x400 --len 200命令，获取了目标文件从偏移 0x400（十进制 1024）开始、长度 200 字节的
十六进制机器码及对应 ASCII 字符。文件总大小为 14848 字节（0x3A00），本次读取范围为偏移 0x400 至 0x4C7
（十进制 1024 至 1223）。输出内容以十六进制和 ASCII 字符对照形式呈现，左侧为偏移地址，中间两列是十六进制
数据（每 16 字节为一组），右侧为可打印的 ASCII 字符（不可打印字符以 “.” 表示），共输出 13 行数据，完整展示
了该偏移区间内的二进制数据及字符映射情况，便于分析文件此部分的机器码或数据内容。

DEP/NX保护: 兼容 (数据页不可执行)

控制流保护(CFG): 禁用

强制完整性: 禁用

SEH异常处理: 允许 (支持结构化异常处理)

数字证书: 不存在

--

[其他特性]

--

终端服务感知: 否

UAC虚拟化: 禁用 (不虚拟化文件系统/注册表)

隔离特性: 禁用

调试信息: 存在 (包含调试符号目录)

--

[PEVIEW] # HexAscii --offset 0x400 --len 200

--

文件总大小:14848 字节（0x0000000000003A00）

读取范围:起始偏移 = 1024（0x0000000000000400），结束偏移 = 1223（0x00000000000004C7），读取长度 =

200 字节

--

--

偏移 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F | ASCII

--

0x00000400 | 55 8B EC 83 EC 24 A1 00 30 40 00 33 C5 89 45 FC | U....$..0@.3..E.

0x00000410 | 56 8B 35 E0 20 40 00 57 8B 7D 08 6A 64 68 38 34 | V.5. @.W.}.jdh84

0x00000420 | 40 00 6A 67 57 FF D6 6A 64 68 70 33 40 00 6A 6D | @.jgW..jdhp3@.jm

0x00000430 | 57 FF D6 8B CF E8 D6 00 00 00 6A 00 57 6A 00 6A | W.........j.Wj.j

0x00000440 | 00 6A 00 68 00 00 00 80 6A 00 68 00 00 00 80 68 | .j.h....j.h....h

0x00000450 | 00 00 CF 00 68 38 34 40 00 68 70 33 40 00 6A 00 |h84@.hp3@.j.

0x00000460 | 89 3D 00 35 40 00 FF 15 BC 20 40 00 8B F0 85 F6 | .=.5@.... @.....

0x00000470 | 0F 84 86 00 00 00 FF 75 14 56 FF 15 B8 20 40 00 |u.V... @.

0x00000480 | 56 FF 15 B4 20 40 00 6A 6D 57 FF 15 DC 20 40 00 | V... @.jmW... @.

0x00000490 | 8B 35 D8 20 40 00 6A 00 6A 00 89 45 DC 8D 45 E0 | .5. @.j.j..E..E.

0x000004A0 | 6A 00 50 FF D6 85 C0 74 3E 8B 3D D0 20 40 00 53 | j.P....t>.=. @.S

0x000004B0 | 8B 1D CC 20 40 00 8D 45 E0 50 FF 75 DC FF 75 E0 | ... @..E.P.u..u.

0x000004C0 | FF 15 D4 20 40 00 85 C0 | ... @...

--

读取完成:共读取 200 字节，输出 13 行

af://n61

特定区域反汇编输出
通过Disassembly --offset 0x400 --len 50命令，对目标文件偏移 0x400 开始、长度 50 字节的区域进行反汇编，输出
了该区域的机器码与对应汇编指令。结果按 “文件偏移 - 机器码 - 反汇编指令集” 三列呈现，共涵盖 18 条指令，内容以
函数栈帧初始化（如push ebp、mov ebp, esp、sub esp, 0x24）、寄存器操作（如mov eax, dword ptr
[0x403000]、xor eax, ebp）、寄存器入栈（如push esi、push edi）及函数调用准备（如多次push参数、call esi）
为主，清晰展示了该特定区域的底层执行逻辑，可用于分析函数初始化或关键代码片段的指令流程。

区域搜索机器码特征
通过SearchSig --offset 0x300 --len 1024 --sig 55 8B ??命令，在文件偏移 0x300（十进制 768）开始、长度 1024 字
节的范围内，搜索特征码 “55 8B ??（含通配符，总长度 3 字节）”，共找到 4 个匹配结果。匹配位置的十进制偏移分
别为 1024、1296、1440、1728，对应十六进制偏移 0x400、0x510、0x5A0、0x6C0，每个位置的十六进制数据均
以 “55 8B” 开头，第三个字节符合通配符匹配规则（分别为 EC、EC、E4、EC），清晰呈现了特征码在指定区域内的
分布情况，可用于定位符合特定指令模式（如函数开头的栈帧初始化指令）的代码片段。

--

[PEVIEW] # Disassembly --offset 0x400 --len 50

--

文件偏移 机器码 反汇编指令集

--

0x00000400 | 55 | push ebp

0x00000401 | 8B EC | mov ebp, esp

0x00000403 | 83 EC 24 | sub esp, 0x24

0x00000406 | A1 00 30 40 00 | mov eax, dword ptr [0x403000]

0x0000040B | 33 C5 | xor eax, ebp

0x0000040D | 89 45 FC | mov dword ptr [ebp - 4], eax

0x00000410 | 56 | push esi

0x00000411 | 8B 35 E0 20 40 00 | mov esi, dword ptr [0x4020e0]

0x00000417 | 57 | push edi

0x00000418 | 8B 7D 08 | mov edi, dword ptr [ebp + 8]

0x0000041B | 6A 64 | push 0x64

0x0000041D | 68 38 34 40 00 | push 0x403438

0x00000422 | 6A 67 | push 0x67

0x00000424 | 57 | push edi

0x00000425 | FF D6 | call esi

0x00000427 | 6A 64 | push 0x64

0x00000429 | 68 70 33 40 00 | push 0x403370

0x0000042E | 6A 6D | push 0x6d

0x00000430 | 57 | push edi

--

[PEVIEW] # SearchSig --offset 0x300 --len 1024 --sig 55 8B ??

--

搜索范围:起始偏移 = 768（0x0000000000000300），搜索长度 = 1024 字节

特征码:55 8B ??（长度:3字节，包含通配符）

--

af://n64
af://n67

区域搜索内字符串特征
通过SearchString --offset 0x10 --len 1024 --str .text命令，在文件偏移 0x10（十进制 16）开始、长度 1024 字节的
范围内，搜索 ASCII 字符串 “.text”（长度 5 字节），找到 1 个匹配结果。该结果位于十进制偏移 504（十六进制
0x1F8）处，对应的 VA 地址为 0x00400000，匹配内容为 “.text”，准确呈现了目标字符串在指定区域内的位置信息，
可用于定位与.text 节区相关的字符串标识。

内置十六进制计算器
通过内置十六进制计算器的Add和Sub命令进行了运算：Add --x 0x100 --y 0x200计算得 0x300（十进制 768、八进制
1400、二进制 1100000000）；Sub --x 0x100 --y 0x10计算得 0xF0（十进制 240、八进制 360、二进制
11110000），结果均以十六进制、十进制、八进制、二进制四种形式呈现，清晰展示了十六进制加减法的运算结果。

找到 4 个匹配结果:

--

偏移（十进制） 偏移（十六进制） 匹配位置的十六进制数据

--

1024 0x0000000000000400 55 8B EC 83 EC 24 A1 00 30 40 00 33 C5 89 45 FC

1296 0x0000000000000510 55 8B EC 83 EC 34 A1 00 30 40 00 33 C5 89 45 FC

1440 0x00000000000005A0 55 8B EC 83 E4 F8 83 EC 4C A1 00 30 40 00 33 C4

1728 0x00000000000006C0 55 8B EC 8B 45 0C 2D 10 01 00 00 74 1F 48 75 25

--

搜索完成

--

[PEVIEW] # SearchString --offset 0x10 --len 1024 --str .text

--

搜索范围:起始偏移 = 16（0x0000000000000010），搜索长度 = 1024 字节

目标字符串:".text"（长度:5字节，ASCII）

--

找到 1 个匹配结果:

--

偏移（十进制） 偏移（十六进制） VA地址（十六进制） 匹配内容

--

504 0x00000000000001F8 0x0000000000400000 ".text"

--

搜索完成

--

af://n70
af://n73

文件地址转虚拟地址
通过FoaToVa --foa 420命令，将目标文件偏移（FOA）0x00000420 转换为虚拟地址（VA），转换过程如下：首先明
确模块基地址为 0x00400000、节区总数 5 个，随后定位到 FOA 所属的.text 节区 —— 该节区文件偏移范围
0x00000400-0x00000FFF、虚拟地址（RVA 起始）0x00001000。通过公式计算：先算 RVA = 节区 RVA 起始 +（FOA
- 节区文件偏移起始）=0x00001000+（0x00000420-0x00000400）=0x00001020，再算 VA = 基地址 +
RVA=0x00400000+0x00001020=0x00401020，最终得到转换结果：FOA 0x00000420 对应 RVA 0x00001020、VA
0x00401020。

[PEVIEW] # Add --x 0x100 --y 0x200

0x100 + 0x200 =>

 HEX= 00000300

 DEC= 768

 OCT= 1400

 BIN= 1100000000

[PEVIEW] #

[PEVIEW] # Sub --x 0x100 --y 0x10

0x100 - 0x10 =>

 HEX= 000000F0

 DEC= 240

 OCT= 360

 BIN= 11110000

[PEVIEW] # FoaToVa --foa 420

--

[*] FOA转VA转换开始:

[*] 目标FOA地址:0x00000420

[*] 模块基地址（ImageBase）:0x00400000

[*] 节区总数:5

--

[节区 1] 名称:.text | 文件偏移范围:0x00000400 - 0x00000FFF | 节区虚拟地址:0x00001000

--

[+] 找到FOA所属节区:

 节区名称:.text

 节区文件偏移范围:0x00000400 - 0x00000FFF（有效范围）

 节区虚拟地址（RVA起始）:0x00001000 | 节区文件大小:0x00000C00

--

 转换过程:

 RVA = 节区虚拟地址 + (FOA - 节区文件偏移起始)

 RVA = 0x00001000 + (0x00000420 - 0x00000400) = 0x00001020

 VA = 基地址 + RVA

 VA = 0x00400000 + 0x00001020 = 0x00401020

--

 最终结果:

 FOA:0x00000420 --> RVA:0x00001020 --> VA:0x00401020

--

af://n76
af://n79

虚拟地址转文件地址
通过VaToFoa --va 00401020命令，将目标虚拟地址（VA）0x00401020 转换为文件偏移（FOA），转换过程如下：
先明确模块基地址 0x00400000、节区总数 5 个，接着定位到 VA 所属的.text 节区 —— 该节区 VA 范围 0x00401000-
0x00401B73、RVA 起始 0x00001000、文件偏移 0x00000400。按公式计算：先算 RVA=VA - 基地址 = 0x00401020-
0x00400000=0x00001020，再算 FOA = 节区文件偏移 +（RVA - 节区 RVA 起始）=0x00000400+（0x00001020-
0x00001000）=0x00000420，最终得到转换结果：VA 0x00401020 对应 RVA 0x00001020、FOA 0x00000420。

相对地址转文件地址
通过RvaToFoa --rva 00001020命令，将目标相对地址（RVA）0x00001020 转换为文件偏移（FOA），转换过程如
下：先明确模块基地址 0x00400000、节区总数 5 个，随后定位到 RVA 所属的.text 节区 —— 该节区 RVA 范围
0x00001000-0x00001B74、文件偏移 0x00000400。按公式计算：FOA = 节区文件偏移 +（RVA - 节区 RVA 起始）
=0x00000400+（0x00001020-0x00001000）=0x00000420，同时还推导得出对应虚拟地址（VA）为
0x00401020，最终转换结果为：RVA 0x00001020 对应 VA 0x00401020、FOA 0x00000420。

[PEVIEW] # VaToFoa --va 00401020

--

[*] VA转FOA转换开始:

[*] 目标VA地址:0x00401020

[*] 模块基地址（ImageBase）:0x00400000

[*] 节区总数:5

--

[节区 1] 名称:.text | VA范围:0x00401000 - 0x00401B73 | 节区RVA起始:0x00001000 | 内存大

小:0x00000B74

--

[+] 找到VA所属节区:

 节区名称:.text

 节区VA范围:0x00401000 - 0x00401B73（有效范围）

 节区RVA起始:0x00001000 | 节区文件偏移:0x00000400 | 内存大小:0x00000B74

--

 转换过程:

 RVA = VA - 基地址

 RVA = 0x00401020 - 0x00400000 = 0x00001020

 FOA = 节区文件偏移 + (RVA - 节区RVA起始)

 FOA = 0x00000400 + (0x00001020 - 0x00001000) = 0x00000420

--

 最终结果:

 VA:0x00401020 --> RVA:0x00001020 --> FOA:0x00000420

--

[PEVIEW] # RvaToFoa --rva 00001020

--

[*] RVA转FOA转换开始:

[*] 目标RVA地址:0x00001020

[*] 模块基地址（ImageBase）:0x00400000

[*] 节区总数:5

--

[节区 1] 名称:.text | RVA范围:0x00001000 - 0x00001B74 | 节区文件偏移:0x00000400

--

[+] 找到RVA所属节区:

af://n79
af://n82

虚拟地址转相对地址
通过VaToRva --va 00401020命令，将目标虚拟地址（VA）0x00401020 转换为相对地址（RVA），转换过程如下：
明确模块基地址为 0x00400000、模块总大小 0x00007000，按核心公式 “RVA = VA - 基地址” 计算，即 0x00401020 -
0x00400000 = 0x00001020。最终结果显示，VA 0x00401020 对应的 RVA 为 0x00001020，且该 RVA 在模块范围
内，转换有效。

相对地址转虚拟地址
通过RvaToVa --rva 00001020命令，将目标相对地址（RVA）0x00001020 转换为虚拟地址（VA），转换过程如下：
明确模块基地址为 0x00400000、模块总大小 0x00007000，依据核心公式 “VA = 基地址 + RVA” 计算，即
0x00400000 + 0x00001020 = 0x00401020。校验显示该 RVA 位于有效节区内，VA 有效，最终转换结果为：RVA
0x00001020 对应 VA 0x00401020。

 节区名称:.text

 节区RVA起始:0x00001000 | 节区RVA结束:0x00001B74

 节区文件偏移:0x00000400 | 节区虚拟大小:0x00000B74 | 节区文件大小:0x00000C00

--

 转换过程:

 FOA = 节区文件偏移 + (RVA - 节区RVA起始)

 FOA = 0x00000400 + (0x00001020 - 0x00001000) = 0x00000420

--

 最终结果:

 RVA:0x00001020 --> VA:0x00401020 --> FOA:0x00000420

--

[PEVIEW] # VaToRva --va 00401020

--

[*] VA转RVA转换开始:

[*] 目标VA地址:0x00401020

[*] 模块基地址（ImageBase）:0x00400000

[*] 模块总大小（SizeOfImage）:0x00007000

--

 转换过程:

 RVA = VA - 基地址

 RVA = 0x00401020 - 0x00400000 = 0x00001020

--

 最终结果:

 VA:0x00401020 --> RVA:0x00001020（有效，在模块范围内）

--

[PEVIEW] # RvaToVa --rva 00001020

--

[*] RVA转VA转换开始:

[*] 目标RVA地址:0x00001020

[*] 模块基地址（ImageBase）:0x00400000

[*] 模块总大小（SizeOfImage）:0x00007000

--

 转换过程:

af://n85
af://n88

接口版
PEVIEW 接口版运行后，将自动在本地主机的 8000 端口启动 HTTP 接口侦听服务，为外部工具或脚本提供标准化的
PE 文件分析功能调用入口。该接口支持多种调用方式，既可以通过 POSTMAN、Apifox 等可视化接口测试工具发起
请求，也可使用 CURL 命令行工具执行快速调用，还能集成到 Python 等编程语言的脚本中，实现自定义分析流程的
自动化。

使用CURL调用
接口版的所有后续分析功能（如头部查询、节表解析、反汇编等）均依赖前置操作，通过Open接口成功打开待分析的
可执行文件（仅支持本地磁盘路径），只有完成文件加载后，后续调用其他功能接口才能返回有效数据，以CURL调用
为例，如下是分别调用打开文件及获取文件基本信息的输出结果。

 VA = 基地址 + RVA

 VA = 0x00400000 + 0x00001020 = 0x00401020

--

 校验结果:

 RVA在有效节区内，VA有效

 最终结果:

 RVA:0x00001020 --> VA:0x00401020

--

curl -X POST "http://localhost:8000" ^

-H "Content-Type: application/json" ^

-d "{\"class\":\"PE\",\"interface\":\"Open\",\"params\":[\"e:\\\\win32.exe\"]}"

{

 "status": "success",

 "result": {

 "message": "The PE file has been successfully opened",

 "file_path": "e:\\\\win32.exe",

 "file_size": 14848

 },

 "timestamp": 26924437

}

curl -X POST "http://localhost:8000" ^

-H "Content-Type: application/json" ^

-d "{\"class\":\"PE\",\"interface\":\"FileBasicInfo\",\"params\":[]}"

{

 "status": "success",

 "result": {

 "file_basic_info": {

 "file_path": "e://win32.exe",

 "file_size_bytes": 14848,

 "file_size_kb": 14.5,

 "file_size_mb": 0.01416015625,

 "file_attributes": "file; ",

 "create_time": "2025-10-17 20:46:43",

 "modify_time": "2025-10-17 20:46:43",

af://n91
af://n93

 "map_base_address": "0x01510000",

 "map_base_address_dec": 22085632

 },

 "pe_identifier": {

 "dos_signature_hex": "0x00005a4d",

 "dos_signature_dec": 23117,

 "dos_signature_desc": "Valid DOS signature (MZ)",

 "pe_header_offset_hex": "0x00000100",

 "pe_header_offset_dec": 256,

 "nt_signature_hex": "0x00004550",

 "nt_signature_dec": 17744,

 "nt_signature_desc": "Valid PE signature (pe00)",

 "machine_type_hex": "0x0000014c",

 "machine_type_dec": 332,

 "machine_type_desc": "x86 (32bit)",

 "section_count": 5,

 "nt_timestamp_hex": "0x68f23ab3",

 "nt_timestamp_dec": 1760705203,

 "nt_timestamp_desc": "1601-01-01 08:02:56",

 "nt_characteristics_hex": "0x00000102",

 "nt_characteristics_dec": 258,

 "nt_characteristics_desc": "Executable; "

 },

 "optional_header_info": {

 "entry_point_rva_hex": "0x000015bb",

 "entry_point_rva_dec": 5563,

 "image_base_hex": "0x00400000",

 "image_base_dec": 4194304,

 "image_size_hex": "0x00007000",

 "image_size_dec": 28672,

 "section_alignment_hex": "0x00001000",

 "section_alignment_dec": 4096,

 "file_alignment_hex": "0x00000200",

 "file_alignment_dec": 512,

 "subsystem_hex": "0x00000002",

 "subsystem_dec": 2,

 "subsystem_desc": "Windows GUI (Graphical interface)",

 "dll_characteristics_hex": "0x00008140",

 "dll_characteristics_dec": 33088,

 "dll_characteristics_desc": "ASLR support; DEP support; ",

 "stack_reserve_size_hex": "0x00100000",

 "stack_reserve_size_dec": 1048576,

 "stack_commit_size_hex": "0x00001000",

 "stack_commit_size_dec": 4096,

 "heap_reserve_size_hex": "0x00100000",

 "heap_reserve_size_dec": 1048576,

 "heap_commit_size_hex": "0x00001000",

 "heap_commit_size_dec": 4096

 },

 "message": "PE File basic information parsing succeeded"

 },

 "timestamp": 27166000

}

函数名 功能描述

open_file(file_path)
打开 PE 文件（所有其他操作的前置步骤），需传入
文件绝对路径

close_file() 关闭 PE 文件并释放服务端资源

get_basic_info()
查询 PE 文件基础信息（文件属性、DOS/NT 头标
识、可选头关键信息等）

show_dos_head() 查询 DOS 头完整信息（IMAGE_DOS_HEADER）

show_nt_head()
查询 NT 头完整信息（含 NT 签名、
IMAGE_FILE_HEADER、
IMAGE_OPTIONAL_HEADER32）

show_section() 查询所有节区信息（IMAGE_SECTION_HEADER）

show_optional_data_directory()
查询可选头数据目录表（16 个标准目录项，如导出
表、导入表等）

使用PYTHON调用
通过使用 peview_client.py脚本也可以快速与PE服务器建立通信，可在控制台执行pip命令安装此工具包。

该脚本是一个轻量级 Python 客户端工具，通过封装 HTTP 请求逻辑与接口调用细节，简化了与 PEVIEW 接口版服务
端的通信流程，支持对 PE 文件进行各类解析和操作，包括文件基础信息查询、结构解析（DOS 头、NT 头、节区
等）、导入 / 导出表分析、地址转换、数据读写与搜索等功能。

具体的函数名称及功能描述请参阅下表所示：

curl -X POST "http://localhost:8000" ^

-H "Content-Type: application/json" ^

-d "{\"class\":\"PE\",\"interface\":\"Close\",\"params\":[]}"

{

 "status": "success",

 "result": {

 "message": "PE file closed, resource released"

 },

 "timestamp": 27428375

}

pip install peview-client

Collecting peview-client

 Downloading peview_client-4.0.0-py3-none-any.whl.metadata (1.5 kB)

Downloading peview_client-4.0.0-py3-none-any.whl (19 kB)

Installing collected packages: peview-client

Successfully installed peview-client-4.0.0

af://n96

函数名 功能描述

show_import_by_dll()
查询所有导入 DLL 列表（含每个 DLL 的 INT/IAT 地
址、时间戳等）

show_import_by_name(dll_name)
查询指定 DLL 的导入函数列表（区分序号导入 / 名称
导入）

show_import_by_function(target_func,
case_sensitive=False, check_ordinal=True)

按函数名 / 序号匹配导入函数（支持模糊匹配）

show_import_all() 遍历所有导入模块和函数（全局导入表完整信息）

show_export()
查询导出表完整信息（含导出函数、序号、转发函数

等）

show_fix_reloc_page() 查询重定位表分页情况（所有重定位块的基础信息）

show_fix_reloc(target_rva)
遍历指定 RVA 的重定位数据或所有重定位数据（支
持 "all" 参数）

show_resource()
查询资源表完整信息（3 级目录结构：类型目录→名
称 / ID 目录→语言目录）

va_to_foa(va) VA（虚拟地址）转换为 FOA（文件偏移地址）

rva_to_foa(rva) RVA（相对虚拟地址）转换为 FOA（文件偏移地址）

foa_to_va(foa) FOA（文件偏移地址）转换为 VA（虚拟地址）

va_to_rva(va) VA（虚拟地址）转换为 RVA（相对虚拟地址）

rva_to_va(rva) RVA（相对虚拟地址）转换为 VA（虚拟地址）

get_hex_ascii(start_addr, addr_len)
读取文件指定范围的十六进制和 ASCII 数据（16 字节
/ 行格式化）

search_signature(start_addr, search_len, sig_str) 特征码搜索（支持通配符??）

search_string(start_addr, search_len, target_str) ASCII 字符串搜索（严格匹配）

get_module_status() 查询模块保护方式（ASLR/DEP/CFG 等安全特性）

get_process_address(dll_name, func_name)
获取指定 DLL 的导出函数地址（模拟
LoadLibrary+GetProcAddress）

disassemble_code(start_foa, disasm_len) 反汇编指定文件范围（x86及x64 架构）

add_calculator(x, y) 十六进制加法计算器（DWORD 无符号运算）

sub_calculator(x, y)
十六进制减法计算器（DWORD 无符号运算，负数自
动模 2^32）

以打开PE文件及读取基本信息为例，其调用功能如下所示：

MCP Server
PEView 是一款常用的 PE（可执行文件）分析工具，主要用于查看 PE 文件结构、解析文件属性等。为拓展其功能边
界，使其具备大模型调用能力（如借助大模型辅助 PE 文件分析、异常检测等），我们通过适配 MCP（Model
Control Protocol，模型控制协议）接口开发了专属支持方案。

在 MCP 项目目录下，已存放适配文件 peview_mcp 该文件是专门为 PEView 工具开发的 AI 功能接口模块，核心作用
是建立 PEView 与大模型服务的通信桥梁，实现工具与大模型的指令交互、数据传输，确保大模型调用功能稳定运
行。

依赖库安装

使用前需先安装fast-mcp库（MCP 接口运行的核心依赖），确保本地已配置 Python 3.7 及以上环境，打开命令行执
行以下命令即可完成安装：

客户端工具准备

需搭配一款 MCP 协议兼容的客户端程序使用，推荐选用Cherry Studio（界面友好、操作便捷，适配 MCP 接口的常
用工具）。若需替换其他客户端，只需选择支持 MCP 接口协议的工具即可，无强制限制。

CherryStudio下载地址：https://www.cherry-ai.com/download

启动PEView及MCP

from peview_client import *

if __name__ == "__main__":

 # 初始化配置

 config = Config(address="127.0.0.1", port=8000)

 # 验证服务器是否可用

 if not config.is_server_available():

 print("服务器未启动或端口不可达，请检查服务状态")

 else:

 print("服务器连接正常，可执行后续操作")

 # 创建PE接口实例

 pe = PE(config)

 # 1. 打开本地PE文件

 open_result = pe.open_file("e:\\win32.exe")

 print("文件打开结果：", open_result)

 # 2. 查询文件基础信息（需在open成功后调用）

 basic_info = pe.get_basic_info()

 print("\n文件基础信息：")

 print("文件路径：", basic_info["file_basic_info"]["file_path"])

 print("PE签名：", basic_info["pe_identifier"]["nt_signature_desc"])

 print("入口点RVA：", basic_info["optional_header_info"]["entry_point_rva_hex"])

 pe.close_file()

pip install fastmcp

af://n191
https://www.cherry-ai.com/download

首先确保本地已配置 Python 运行环境，且已安装 PEView 相关依赖包（如 CherryPy 等）。打开命令行工具（如
Windows 的 CMD、PowerShell 或 Linux 的 Terminal），切换至 PEView 程序所在目录，执行命令python
peview_mcp.py --run-server启动PEView Server与PEView MCP双服务器。执行成功后，命令行窗口会显示服务启动
日志（如端口监听信息、服务状态 “running” 提示），对应截图中服务端程序运行界面。

打开 CherryStudio 工具后，在主界面找到顶部或右侧的 “设置” 按钮（通常为齿轮图标），点击后在弹出的设置窗口
中选择 “MCP” 选项卡。在 “MCP 服务端地址” 输入框中，填写已启动的 MCP 服务器地址（格式通常为 “IP 地址：端口
号”，本地测试可填 “127.0.0.1: 默认端口”，具体端口需参考服务端启动日志），输入完成后点击 “保存” 或 “应用”。此
时 CherryStudio 客户端会自动与 MCP 服务端建立连接，成功后可在设置界面或主界面看到 “工具已识别” 的提示（如
截图中工具信息显示栏出现对应设备 / 服务标识）。

在 CherryStudio 设置界面，切换至 “模型服务” 列表页，找到 “深度求索” 模型选项（若列表中无该选项，需先确认已
添加对应模型插件）。点击 “深度求索” 模型右侧的 “配置” 或 “连接” 按钮，在弹出的密钥输入框中，填入从深度求索
官方平台申请的有效 API 密钥（需确保密钥未过期且具备模型调用权限），输入后点击 “确认”。系统会自动校验密钥
有效性，校验通过后弹出 “链接成功” 弹窗（如截图中提示框），同时模型服务列表中 “深度求索” 的状态会变为 “已连
接”。

完成模型连接后，返回 CherryStudio 的 “默认模型” 配置页（通常在 “模型服务” 列表页下方或单独的 “模型设置” 选项
卡中），在模型选择列表中找到 “深度求索” 模型，勾选其前方的复选框。勾选后需点击页面底部的 “保存设置” 按钮，
确保默认模型配置生效（若未保存，后续对话可能仍使用原默认模型），对应截图中默认模型勾选界面。

从 CherryStudio 主界面进入对话功能模块（如 “AI 对话”“工具交互” 窗口），在对话框顶部或右侧的 “服务配置” 区
域，确认 “MCP 服务器” 已选择步骤 2 中配置的地址（若未选中需手动下拉选择），同时 “当前使用模型” 已自动切换
为 “深度求索”（若未切换，可点击模型下拉菜单重新选中），确保对话框与服务端、模型的连接一致，对应截图中对
话框的服务器与模型设置界面。

在对话框的输入框中，按照指令格式输入 “打开 E 盘下的 [具体文件名。后缀]”（如 “打开 E 盘下的 test.exe”），点击
“发送” 按钮提交指令。AI 接收指令后，会与 MCP 服务端交互并执行文件读取操作，执行完成后返回结果信息（如截
图中显示 “已成功定位并打开 E 盘下目标文件，文件路径：E:\xxx.xxx”“文件基础信息：大小 xxKB、修改时间 xxxx-xx-
xx” 等），需确认返回信息中无 “文件不存在”“权限不足” 等错误提示。

基于已打开的文件，在对话框中继续输入指令 “分析当前打开程序的 NT 头部数据，并提取其入口点地址”，提交指令
后，AI 会调用 PEView 的程序解析功能，读取 NT 头部中的 IMAGE_OPTIONAL_HEADER 结构数据，筛选出
AddressOfEntryPoint 字段对应的数值。最终返回结果会包含 NT 头部关键数据（如签名、节表数量、时间戳）及入
口点信息（通常以十六进制格式呈现，如 “入口点地址：0x00401000”），对应截图中 AI 返回的 NT 头部分析与入口
点结果界面。

至此，我们封装了32个工具功能，用户可以依次提问并获取想要的结果。

	开始使用
	独立版
	打开待分析文件
	查询文件头部数据
	查询数据目录表
	查询节表
	查询所有导入表
	查询所有导入库
	查询特定库中导入表
	查询特定库中函数位置
	查询所有导出表
	查询重定位项
	查询重定位表分页
	查询重定位页内分页
	查询资源表
	检查函数内存地址
	检查启用保护模式
	输出十六进制及字符串
	特定区域反汇编输出
	区域搜索机器码特征
	区域搜索内字符串特征
	内置十六进制计算器
	文件地址转虚拟地址
	虚拟地址转文件地址
	相对地址转文件地址
	虚拟地址转相对地址
	相对地址转虚拟地址

	接口版
	使用CURL调用
	使用PYTHON调用

	MCP Server

